Infinite-dimensional Symmetry Algebras as a Help toward Solutions of the Self-dual Field Equations with One Killing Vector

نویسندگان

  • DANIEL FINLEY
  • JOHN K. MCIVER
  • T. Takebe
چکیده

The sDiff(2) Toda equation determines all self-dual, vacuum solutions of the Einstein field equations with one rotational Killing vector. Some history of the searches for non-trivial solutions is given, including those that begin with the limit as n → ∞ of the An Toda lattice equations. That approach is applied here to the known prolongation structure for the Toda lattice, hoping to use Bäcklund transformations to generate new solutions. Although this attempt has not yet succeeded, new faithful (tangent-vector) realizations of A∞ are described, and a direct approach via the continuum Lie algebras of Saveliev and Leznov is given.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SU(∞) q-MOYAL-NAHM EQUATIONS AND QUANTUM DEFORMATIONS OF THE SELF DUAL MEMBRANE

ABSTRACT Since the lightcone self dual spherical membrane, moving in flat target backgrounds, has a direct correspondence with the SU(∞) Nahm equations and the continuous Toda theory, we construct the quantum/Moyal deformations of the self dual membrane in terms of the q-Moyal star product . The q deformations of the SU(∞) Nahm equations are studied and explicit solutions are given. The continu...

متن کامل

r - qc / 0 10 50 88 v 2 4 J un 2 00 1 A family of heavenly metrics

The antecedent of Einstein field equations with Euclidean signature is the complex elliptic Monge-Ampère equation, CMA2. For elliptic CMA2 solutions determine hyper-Kähler, self-dual and therefore Ricci-flat metrics with Euclidean signature. We shall consider a symmetry reduction of CMA2 to solutions that admit only a single Killing vector. Systematic studies of vacuum metrics with one Killing ...

متن کامل

ar X iv : g r - qc / 0 10 50 88 v 1 2 4 M ay 2 00 1 A family of heavenly metrics

The antecedent of Einstein field equations with Euclidean signature is the complex elliptic Monge-Ampère equation, CMA2. For elliptic CMA2 solutions determine hyper-Kähler, self-dual and therefore Ricci-flat metrics with Euclidean signature. We shall consider a symmetry reduction of CMA2 to solutions that admit only a single Killing vector. Systematic studies of vacuum metrics with one Killing ...

متن کامل

Twistors and Aspects of Integrability of self-dual SYM Theory

With the help of the Penrose-Ward transform, which relates certain holomorphic vector bundles over the supertwistor space to the equations of motion of self-dual SYM theory in four dimensions, we construct hidden infinite-dimensional symmetries of the theory. We also present a new and shorter proof (cf. hep-th/0412163) of the relation between certain deformation algebras and hidden symmetry alg...

متن کامل

Self-Dual Yang-Mills: Symmetries and Moduli Space

Geometry of the solution space of the self-dual Yang-Mills (SDYM) equations in Euclidean four-dimensional space is studied. Combining the twistor and group-theoretic approaches, we describe the full infinite-dimensional symmetry group of the SDYM equations and its action on the space of local solutions to the field equations. It is argued that owing to the relation to a holomorphic analogue of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001